

Sirindhorn International Institute of Technology Thammasat University at Rangsit

School of Information, Computer and Communication Technology

ECS 371: Solution for Problem Set 2

Semester/Year:1/2009Course Title:Digital CircuitsInstructor:Dr. Prapun Suksompong (prapun@siit.tu.ac.th)Course Web Site:http://www.siit.tu.ac.th/prapun/ecs371/

Due date: July 2, 2009 (Thursday)

Please submit your homework to the instructor 3 minutes BEFORE your class starts.

Instructions

1. The questions are assigned from the following textbook:

Thomas L. Floyd, *Digital Fundamentals*, 10th Edition, Pearson Education International (2009).

- 2. Only TWO of the problems will be graded. Of course, you do not know which problems will be selected; so you should work on all of them.
- 3. Late submission will not be accepted.
- 4. *Write down all the steps* that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

Chapter 4

- 6. Find the value of X for all possible values of the variables.
 - (a) X = (A + B)C + B(b) $X = (\overline{A + B})C$ (c) $X = A\overline{B}C + AB$ (d) $X = (A + B)(\overline{A} + B)$ (e) $X = (A + BC)(\overline{B} + \overline{C})$

6. (a)
$$X = (A + B)C + B$$

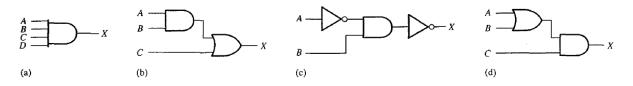
A	В	С	A + B	(A + B)C	X
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	1	0	1
0	1	1	1	1	1
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	1	1

(b) $X = (\overline{A+B})C$

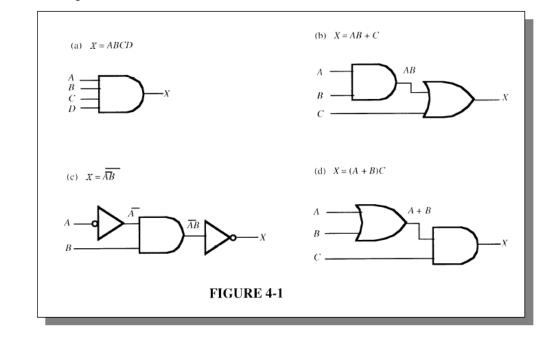
A	В	С	$\overline{A+B}$	Х
0	0	0	1	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	0	0

(c) $X = A\overline{B}C + AB$

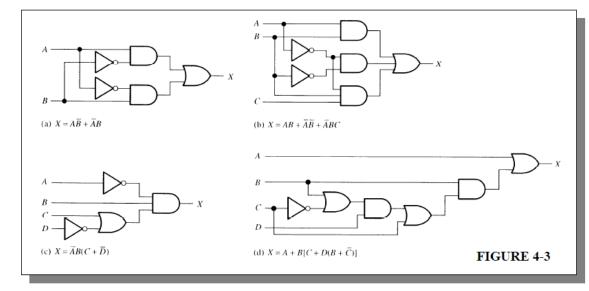
A	В	С	$A\overline{B}C$	AB	X
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	1	0	1
1	1	0	0	1	1
1	1	1	0	1	1


(d)
$$X = (A + B)(\overline{A} + B)$$

A	В	A + B	$\overline{A} + B$	Х
0	0	0	1	0
0	1	1	1	1
1	0	1	0	0
1	1	1	1	1

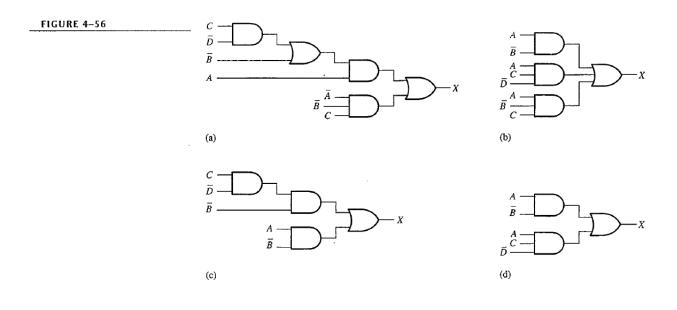

(e) $X = (A + BC)(\overline{B} + \overline{C})$

A	В	С	A + BC	$\overline{B} + \overline{C}$	X
0	0	0	0	1	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	0	0

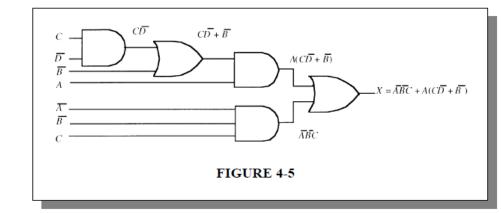

13. Write the Boolean expression for each of the logic circuits in Figure 4–54.

13. See Figure 4-1.

- 15. Draw the logic circuit represented by each expression:
 - (a) $A\overline{B} + \overline{A}B$ (b) $AB + \overline{A}\overline{B} + \overline{A}BC$ (c) $\overline{A}B(C + \overline{D})$ (d) $A + B[C + D(B + \overline{C})]$
- **15.** See Figure 4-3.

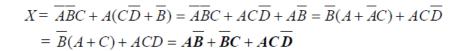

20. Using Boolean algebra, simplify the following expressions:

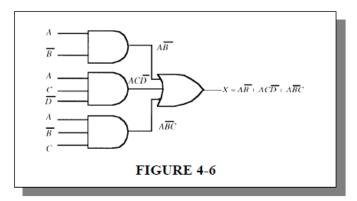
(a) $(A + \overline{B})(A + C)$ (b) $\overline{AB} + \overline{ABC} + \overline{ABCD} + \overline{ABCDE}$ (c) $AB + \overline{ABC} + A$ (d) $(A + \overline{A})(AB + AB\overline{C})$ (e) $AB + (\overline{A} + \overline{B})C + AB$


20. (a)
$$(A + \overline{B})(A + C) = AA + AC + A\overline{B} + \overline{B}C = A + AC + A\overline{B} + \overline{B}C$$

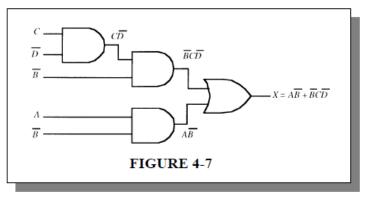
 $= A(1 + C + \overline{B}) + \overline{B}C = A(1) + \overline{B}C = A + \overline{B}C$
(b) $\overline{AB} + \overline{ABC} + \overline{ABCD} + \overline{ABCDE} = \overline{AB}(1 + \overline{C} + CD + \overline{CDE}) = \overline{AB}(1)$
 $= \overline{AB}$
(c) $AB + \overline{ABC} + A = AB + (\overline{A} + \overline{B})C + A = AB + \overline{AC} + \overline{BC} + A$
 $A(B + 1) + \overline{AC} + \overline{BC} = A + \overline{AC} + \overline{BC} = A + C + \overline{BC} = A + C(1 + \overline{B})$
 $= A + C$
(d) $(A + \overline{A})(AB + AB\overline{C}) = AAB + AAB\overline{C} + \overline{AAB} + \overline{AAB\overline{C}}$
 $= AB + AB\overline{C} + 0 + 0 = AB(1 + \overline{C}) = AB$
(e) $AB + (\overline{A} + \overline{B})C + AB = AB + \overline{AC} + \overline{BC} + AB = AB + (\overline{A} + \overline{B})C$

$$= AB + \overline{ABC} = AB + C$$

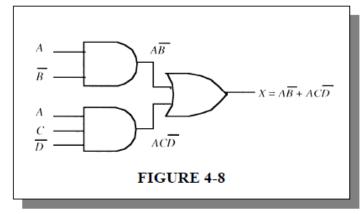

22. Determine which of the logic circuits in Figure 4-56 are equivalent.


22. First develop the Boolean expression for the output of each gate network and simplify.

(a) See Figure 4-5.



(b) See Figure 4-6.


$$X = A\overline{B} + AC\overline{D} + A\overline{B}C = A\overline{B}(1+C) + AC\overline{D} = A\overline{B} + AC\overline{D}$$

(c) See Figure 4-7.

 $X = A\overline{B} + \overline{B}C\overline{D}$ No further simplification is possible.

(d) See Figure 4-8.

 $X = A\overline{B} + AC\overline{D}$ No further simplification is possible.

Therefore, (b) and (d) are equivalent.